Альтернативные датчики для металлоискателя

Кощей-18М (ВМ8043)

 

Часть 6. Новый концентрический датчик

 

Несмотря на то, что нами разработаны и опубликованы уже несколько альтернативных конструкций датчиков для этого металлоискателя, по-прежнему наибольшим спросом пользуются концентрические датчики типа «кольцо». Они эргономичны, универсальны, выпускаются многими производителями. Однако, пластиковые корпуса, которые описаны здесь и которыми ранее комплектовались наши наборы, к сожалению, сняты с производства по независящим от нас причинам. А разработанные датчики ДК-27, оказались “по зубам” не всем самодельщикам из-за хлопотности “стеклопластиково-пенопластовой” технологии. Вместе с тем в продаже доступны новые пластиковые корпуса диаметром 200мм. Они вполне годятся и для датчиков индукционных металлоискателей. Правда, заливать прецизионную систему катушек таких датчиков непосредственно в этот корпус несколько проблематично. Поэтому нами была разработана специальная заливочная форма, изготавливаемая по блистерной технологии. Сейчас освоен серийный выпуск таких форм.

Рассмотрим подробно процесс изготовления такого датчика. Вначале нам потребуется намотать катушки. Передающая катушка мотается проводом диаметром 0.63-0.67мм на оправке диаметром 180мм и шириной 6мм. Эта катушка должна содержать 24 витка. Компенсирующая катушка мотается таким же проводом на оправке диаметром 74мм и шириной 6мм. Она содержит 8 витков. Эту обмотку нужно намотать аккуратно виток к витку. Поверх нее мотается приемная катушка проводом диаметром 0.31-0.33мм. Мотать нужно 240 витков. При намотке этой катушки нужно соблюсти одну тонкость – начальные витки должны как можно скорее скрыть под собой компенсирующую катушку. Благодаря этому при балансировке мы сможем обойтись без дополнительных компенсирующих цепей! А объяснение здесь простое – позже мы подключим начало обмотки приемной катушки к “земляному” потенциалу. В результате начальные витки будут экранировать остальную обмотку от компенсирующей катушки, существенно уменьшая паразитную емкостную связь. После намотки всех катушек их нужно аккуратно и плотно увязать нитками и снять с оправок.

Нелишне заметить, что обмоточные провода должны быть новые с идеальной изоляцией. Можно использовать только медные обмоточные провода. Недопустимо использовать б/у провод, добытый из обмоток электротехнических устройств – как правило, он имеет микротрещины, которые могут привести к межвитковым замыканиям, что испортит результат всей кропотливой работы.

Сначала берем заливочную форму и укладываем в радиальные “спицы” углублений полоски из стеклоткани или обычной ткани (для армирования). Сверху укладываем наши катушки. Перед укладкой узелки стягивающих нитей разворачиваем таким образом, чтобы они оказались снизу. Это приподнимет катушки и позволит смоле легко затечь под них.

 

 

 

 

Далее подключаем катушки к кабелю согласно схеме. Особое внимание следует уделить фазировке катушек при подпайке кабеля. Передающая и компенсирующая катушки должны быть включены встречно. Для удобства восприятия на схеме условно показаны начала и концы всех катушек  в виде выводов, выходящих из катушек в определенном направлении. Именно так и нужно ориентировать и распаивать концы "настоящих катушек". На рисунке ниже показан способ подключения датчика с помощью “толстого” S-VHS кабеля Belsis BW7809PL. Такой кабель дает чуть большее потребление прибора, чем при использовании AWM2919 (толстый VGA-кабель с двойным экранированием, используемый в компьютерных мониторах и плазменных панелях) или LIYCY-CY (монтажный слаботочный кабель с двойным экранированием). Однако BW7809PL  гораздо проще в распайке.

 

 

 

 

Выводы катушек фиксируем с помощью небольшой цилиндрика из пластилина. Кроме фиксации выводов, он играет еще одну важную технологическую роль – в дальнейшем он формирует места выходов проводов из заливочной массы. Для этого в блистерной форме есть небольшое цилиндрическое углубление, которое должен плотно заполнить нижний конец пластилинового цилиндрика. Входы проводов обмоток в цилиндрик должны при этом располагаться на уровне горизонтальной поверхности пластика блистерной формы, а выходы в сторону распайки кабеля – выше уровня заливки эпоксидной смолы.

 

 

 

 

Теперь приступаем к предварительной балансировке датчика. Для этого располагаем датчик подальше от металлических предметов и включаем сервисный режим “Калибровка тракта”. Подробности входа в этот режим описаны здесь. Вначале нам необходимо включить рабочую частоту 7кГц, Устанавливаем Усиление 1 и фазовый сдвиг в районе 150-160градусов. Намоточные данные катушек подобраны таким образом, чтобы вначале компенсирующая катушка создавала небольшую избыточную компенсацию. В этом случае шкалы X и Y отклоняются вправо. А при попытке слегка приподнять малую катушку над формой, эта картина только усугубляется. Т.е. шкалы при этом не должны переходить влево через ноль. Если же у вас при подъеме все-таки показания шкал переходят через ноль, значит, из-за погрешностей в диаметрах провода или оправок получилась небольшая недокомпенсация. Тем не менее, в таком случае датчик также можно сбалансировать, об этом будет сказано ниже. 

Рассмотрим способ устранения  небольшой перекомпенсации. Для этого нам нужно немного удалить компенсирующую катушку от приемной. Делаем это с помощью деревянной зубочистки – внедряем ее под витки компенсирующей катушки и слегка отгибаем их к центру. При этом следим за показаниями, стремясь получить нулевой баланс по обеим шкалам X и Y.

 

 

 

Т.к. провод компенсирующей катушки достаточно жесткий, отогнутые витки не нуждаются в дополнительной фиксации. Следя за показаниями шкал, отгибаем необходимое число витков. Если для баланса не хватает витков одного сектора между нитяными утяжками, переходим к другому сектору. Добившись близких к нулю показаний при Усилении 1, устанавливаем Усиление 8 и корректируем положение витков. Добившись разбаланса не хуже ±20%, предварительную балансировку можно считать завершенной. Отпаиваем кабель и приступаем к заливке катушек эпоксидной смолой. Для этих целей нам понадобится примерно 100-110грамм смолы. В конце заливки загибаем “хвосты” армирующих лент вовнутрь “спиц” и оставляем форму на ровной поверхности на 24 часа для застывания смолы.

 

 

После застывания смолы извлекаем отливку из формы. Форму при этом можно не жалеть – в нужных местах кромсаем ее ножницами. Удаляем пластилин, а через образовавшееся отверстие протягиваем концы проводов на другую сторону отливки. В результате получаем такую изящную и прочную конструкцию:

 

 

Теперь датчик нужно заэкранировать. Для этих целей используем все тот же токопроводящий лак на основе нитролака и измельченного графита. Подробности приготовления описаны ранее. В данной конструкции экранируется не корпус, а непосредственно залитые катушки. С помощью кисти покрываем лаком “малое кольцо”. Не забываем установить вывод заземления – небольшой отрезок многожильного изолированного провода, один конец которого нужно зачистить и “распушить”, а потом смазать проводящим лаком. Для удобства этот проводник можно предварительно зафиксировать с помощью капли термоклея.

 

 

Внимание: Передающую катушку экранировать не нужно! В этой конструкции это не только избыточно, но и вредно. Избыточно потому что выходной каскад Кощея-18М имеет очень низкий импеданс, поэтому передающая катушка практически не подвержена емкостному эффекту. А вредно, потому что при близком расположении экрана от передающей катушки в нем начинают протекать ощутимые индукционные токи, которые приводят к  деградации  экрана и, как следствие – к ложным откликам.

 

Далее приступаем к размещению датчика внутри корпуса. Прикручиваем к кронштейну гермоввод. Гайку гермоввода желательно зафиксировать каким-либо клеем или компаундом. Затем пропускаем через гермоввод конец кабеля.

 

 

 

Теперь этот конец кабеля изгибаем и плотно укладываем внутри кроштейна, затем надежно фиксируем с помощью термоклея.

 

 

 

 

 

Дальше приступаем к подготовке крышек корпуса. На верхней крышке с помощью бокорезов или скальпеля нужно удалить четыре бобышки (синие стрелки). Затем сверлим шесть отверстий диаметром 3мм и зенкуем их сверлом 6-7мм под головку самореза (зеленые стрелки). Потом сверлим отверстие диаметром 7-8мм под кабель (красная стрелка). На нижней крышке только удаляем бобышки. Бобышки не выбрасываем, они нам пригодятся позже.

 

 

 

Далее продеваем конец кабеля в отверстие на крышке и прикручиваем кронштейн с помощью нержавеющих саморезов 3х16мм. В районе “ушей” кронштейна для повышения прочности соединения можно применить саморезы 3х20мм или 3х25мм. Внимание: саморезы должны быть обязательно нержавеющими. Они, в отличие от обычных стальных, не приводят к разбалансу датчика.

Далее вставляем датчик внутрь верхней крышки корпуса и смотрим, что у нас получилось:

 

 

 

Теперь нам нужно зафиксировать датчик внутри верхней крышки корпуса. Для этого приподнимаем датчик и наносим внутри корпуса в местах, показанных стрелками, термоклей. Термоклей должен быть хорошо разогрет. Затем плотно прижимаем датчик к крышке. В месте выхода кабеля (синяя стрелка) клей должен выступить вовнутрь и загерметизировать отверстие вокруг кабеля. Концы кабеля ориентируем вдоль днища образовавшейся “ванночки”, в которую будет производиться финишная заливка, фиксирующая выводы обмоток. По поводу термоклея хотим обратить внимание, что “не все стиральные порошки одинаково хороши” J. Очень неплохо себя зарекомендовал термоклей TOPEX. В отличие от дешевых марок клея он дает весьма надежное соединение с полистиролом и эпоксидной отливкой.

 

 

 

 

Далее подпаиваем концы катушек к кабелю согласно схеме, которая была приведена выше. Обращаем ваше внимание, что при использовании кабеля BW7809PL (или подобного), экранирование катушек идет только по цепи “земляного” провода приемной катушки. А экран проводника, подключаемого к передатчику, в данном включении к земле не подключен. Поэтому нужно следить за тем, чтобы при монтаже в разъеме и датчике эти экраны между собой не соприкасались!

Подключаем датчик к прибору, входим в сервисный режим и проверяем баланс. Теперь нам нужно будет уделить особое внимание выводам из более толстого провода, которые подпаиваются к кабелю. Положение этих выводов существенно влияет на баланс! Поэтому их нужно уложить оптимальным образом. Наибольшую чувствительность к балансировке эти выводы имеют при укладке рядом с приемной катушкой. Направление укладки также имеет значение. От него зависит в какую сторону мы движемся – перекомпенсации или недокомпенсации. Следим за показаниями шкал и укладываем выводы таким образом, чтобы баланс по обеим шкалам сошелся в ноль (При Усилении 8). По шкале Х допустим разбаланс ±15%. При укладке желательно оставить небольшую петельку размером 1-2см, которая будет возвышаться над поверхностью ванночки.

 

 

 

Отдельно следует остановиться на случае, когда балансировка с помощью имеющихся “хвостов” не получается. В этом случае один из выводов следует нарастить таким же проводом и уложить его по периметру внутри “ванночки”. Такая петля провода играет роль вспомогательной компенсирующей обмотки. Направление укладки определяем по показаниям шкал. В случае сильного разбаланса может потребоваться несколько таких витков. Таким способом можно “лечить” и перекомпенсацию, и недокомпенсацию.

Далее размещаем датчик строго горизонтально и заливаем “ванночку” эпоксидной смолой. После застывания смолы еще раз проверяем баланс и, если нужно, корректируем его с помощью петельки, оставшейся над поверхностью. Петлю нужно прижать к поверхности и изогнуть оптимальным образом, следя за показаниями шкал.

 

 

Теперь к датчику можно приклеивать нижнюю крышку. В принципе, для этого подойдет любой универсальный клей. Но наилучшие результаты дает самодельный клей, изготовленный путем растворения полистирола в дихлорэтане. Для этого нам и сгодятся удаленные ранее бобышки. Помещаем их в какой-нибудь пузырек, заливаем небольшим количеством дихлорэтана и герметично закрываем. Ждем пока полистирол полностью растворится, на что обычно требуется пара часов. Затем смесь перемешиваем и, если нужно, разбавляем дихлорэтаном до густоты сметаны. Внимание: с дихлорэтаном нужно работать в хорошо проветриваемом помещении, т.к. его пары ядовиты! Далее приступаем к склейке. Для этого нужно аккуратно промазать клеем пазы на обеих половинках и плотно сжать их. С клеем важно не переборщить, чтобы его остатки не вылезли наружу. Кстати, одно из достоинств самодельного клея в том, что он имеет такой же цвет, что и корпус. Поэтому небольшие огрехи склейки будут малозаметны. Также следует обратить внимание, что этот клей сохнет достаточно быстро. Поэтому процесс смазывания нельзя сильно затягивать (не дольше 5-10минут).

Итак, в результате всех трудов мы получили вот такой датчик.

 

 

Подключаем датчик  к Кощею-18М и выполняем фазовую калибровку тракта вместе с этим датчиком. Делаем это тем же способом, который был описан в предыдущих главах. В этом экземпляре для частоты 7кГц фазовый сдвиг получился 150.5 градуса, для 14кГц – 173.6 градусов.  Включаем поисковые режимы, подносим к датчику различные типовые мишени и убеждаемся в том, что прибор их обнаруживает и правильно распознает.

 

Выводы

 

При лабораторных испытаниях были получены следующие параметры:

Масса датчика – 496гр.

Дальность обнаружения по воздуху (в селективном режиме): 

    5коп. СССР                                                       30см.

    медная копейка  Алексея Михайловича       13см.

Потребление на частоте 7кГц – 143мА.

Потребление на частоте 14кГц – 83мА.

Электрический баланс сохраняется в диапазоне температур -10…+50 градусов Цельсия.

 

Из приведенных цифр видно, что максимальная глубина датчика не уступает параметрам  предыдущего концентрического датчика диаметром 200мм. Вместе с тем новый датчик обладает гораздо более элегантным дизайном, имеет существенно меньшую массу.  С описанным датчиком заметно меньше энергопотребление прибора. Также следует отметить, что при новом соотношении диаметров приемной и передающей катушек (1:2 вместо 1:1.4) возросла чувствительность к мелким объектам (например – монетам-чешуйкам). Но при этом несколько заострилась “конусность” диаграммы направленности.

При полевых испытаниях было замечено еще одно полезное свойство – такой датчик менее подвержен ложным откликам при ударах о ветки, толстые стебли травы и т.д. Очевидно, это связано с тем, что датчик имеет “мягкую подвеску” внутри корпуса.

 

Продолжение следует…